If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5q^2-8q-4=0
a = 5; b = -8; c = -4;
Δ = b2-4ac
Δ = -82-4·5·(-4)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-12}{2*5}=\frac{-4}{10} =-2/5 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+12}{2*5}=\frac{20}{10} =2 $
| -w/4=100 | | 7*c=777 | | 2((x-1)+(x-2)-(x-3))=0 | | -10d+16d=-12 | | -4/1•-w/4=100•-4/1 | | 12z+-11z=-17 | | 8–5y=–11 | | 148+2h=960 | | 8x^2+29=6x^2-115 | | 4d+6-11d=-8 | | 8m-11+3m+2=19 | | 1032=6(x+17) | | 14r+5-8r=-1 | | 14r+5–8r=-1 | | 347+x=4.9 | | 20(x-3)=170-6x | | 4+3n=-14 | | j+19/29=9 | | 3/5x-13=29 | | 1/2(6x-20)=50 | | 3x^2+5=2x^2-31 | | 4+3(y-6)=24 | | -13x-12=-103 | | 5p–9=2p+12 | | 7x+13=-21 | | 19j/29=9 | | 2(3n+6)=61 | | 64+14m=316 | | 18x-13=-139 | | 4x-3=9x-2 | | 9x-12-7x-13=6 | | 70–7m=3m |